Hàm số lũy thừa Lũy thừa

Hàm số lũy thừa là hàm số có dạng y = x α {\displaystyle y=x^{\alpha }} với α ∈ R {\displaystyle \alpha \in \mathbb {R} }

Tập xác định

Tập xác định của hàm số trên phụ thuộc vào số mũ α {\displaystyle \alpha }

  • nếu α {\displaystyle \alpha } là số nguyên dương thì tập xác định là D = R {\displaystyle D=\mathbb {R} }
  • nếu α = 0 {\displaystyle \alpha =0} hoặc α {\displaystyle \alpha } là số nguyên âm thì tập xác định là D = R ∖ { 0 } {\displaystyle D=\mathbb {R} \setminus \{0\}}
  • nếu α {\displaystyle \alpha } không phải là số nguyên thì tập xác định là D = ( 0 ; + ∞ ) {\displaystyle D=(0;+\infty )}

Đạo hàm

Hàm số y = f ( x ) = x α {\displaystyle y=f(x)=x^{\alpha }} có đạo hàm tại mọi x > 0 và y ′ = α x α − 1 {\displaystyle y'=\alpha x^{\alpha -1}} là đạo hàm cấp 1 của f(x)

Chiều biến thiên của hàm số lũy thừa với biến số dương

Xét hàm số y = x α {\displaystyle y=x^{\alpha }} trên x>0:

  • Với α > 0 {\displaystyle \alpha >0} , hàm số đồng biến trên ( 0 ; + ∞ ) {\displaystyle (0;+\infty )}
  • Với α < 0 {\displaystyle \alpha <0} , hàm số nghịch biến trên ( 0 ; + ∞ ) {\displaystyle (0;+\infty )}

Đồ thị

Đồ thị hàm số y = x α {\displaystyle y=x^{\alpha }} trên x>0

Đồ thị hàm số lũy thừa với số mũ thực và biến số dương

Đồ thị hàm số y = x α {\displaystyle y=x^{\alpha }} trên x>0 có tính chất sau:

  • Luôn đi qua điểm I(1;1)
  • Nếu α < 0 {\displaystyle \alpha <0} , đồ thị nhận trục Ox là tiệm cận ngang và trục Oy là tiệm cận đứng
  • Có đường biểu diễn phụ thuộc vào số mũ α {\displaystyle \alpha }

Đồ thị hàm số lũy thừa với số mũ nguyên

Đồ thị hàm số y = f ( x ) = x n {\displaystyle y=f(x)=x^{n}} với n ∈ Z {\displaystyle n\in \mathbb {Z} } có tính chất tương tự như trên với x>0. Ngoài ra, phần đồ thị với x<0 có tính đối xứng với phần đồ thị x>0 phụ thuộc vào n:

  • Nếu n là số chẵn, đồ thị đối xứng qua trục Oy do f(x) là hàm số chẵn
  • Nếu n là số lẻ, đồ thị đối xứng qua gốc tọa độ O do f(x) là hàm số lẻ